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Abstract

The space charge (SC) is known to be one of the major limitations for the collective
transverse beam stability. When SC is strong (i.e. space charge tune shift� synchrotron
tune) the problem allows an exact analytical solution. For that practically important case
we present a fast and effective Vlasov solver SCHARGEV which calculates a complete
eigensystem (spatial shapes of modes and bunch spectra) and therefore provides the
growth rates and the thresholds of instabilities. SCHARGEV allows an inclusion of
driving and detuning wake forces, coupled bunch motion, any feedback system and
Landau damping. In this presentation we will consider a Gaussian bunch under the
action of resistive wall wakes and damper. A numerical example for FermiLab Recycler
Ring is given.
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1. Introduction. What do we know about SSC?
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Rigid-slice approximation

When the space charge tune shift in the 3D center of a bunch is
much larger than both the synchrotron tune Qs and the
wake-driven coherent tune shift QW

Qmax � Qs,QW

the separation between the coherent frequency and the incoherent
spectrum is larger than the width of the bare incoherent spectrum,
and, the rigid-slice approximation can be used.
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Burov Equation

SSC rigid beam (no-wake eigensystem)

d

dτ

(
u2(τ)

dY (τ)

dτ

)
+ ν Q Y (τ) = 0

QW � Q2
s /Qmax and damper: Yk(τ) =

∑∞
i=0 C

(k)
i Yi (τ)

Y ′′(τ)

R(τ)
+ ω Y(τ) =

[
κ
(
Ŵ + D̂

)
− i g e i ψ Ĝ

]
Y(τ).

κ = Nb
r0R0

4π γ β2 Qβ

Qeff(0)

Q2
s
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2 What is SCHARGEV 1.0?

M · C(k) = ωkC
(k)

M = (νl − i λl)δlm + κ
[
Ŵlm(ζ) + D̂lm

]
− i g e i ψĜlm(ζ)

Ŵlm =

∫ ∞
−∞

∫ ∞
−τ

dσ d τW (τ − σ) ρ(τ) ρ(σ)Yl(τ)Ym(σ) e i ζ(τ−σ),

D̂lm =

∫ ∞
−∞

∫ ∞
−τ

dσ d τ,D(τ − σ) ρ(τ) ρ(σ)Yl(τ)Ym(τ),

Ĝlm = Kl(ζ)P∗m(ζ),

where

(P,K)k(ζ) =

∫ ∞
−∞

d τ (P,K )(τ) ρ(τ)Yk(τ) e i ζ τ .

Tim Zolkin, Alexey Burov SCHARGEV 1.0



INTRODUCTION
SCHARGEV 1.0

RESULTS AND DISCUSSION
SUMMARY

What is SCHARGEV?
SSC harmonics
Dipole moments and flat bunch-by-bunch damper
Wake forces

2.1 SSC harmonics for Gaussian beam

The use of longitudinal distribution function for Gaussian bunch

f (v , τ) =
Nb

2π σ u(τ)
e−v

2/2 u2−τ2/2σ2

gives the equation for SSC harmonics

y ′′(τ) + ν e−τ
2/2y(τ) = 0, y ′(±∞) = 0 ,

where natural system of units is employed: the distance τ is mea-
sured in units of the RMS bunch length σ, and, ν in units of

u2

σ2Qeff(0)
=

Q2
s

Qeff(0)
.
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Orthonormal basis in Hilbert space

Scan and order ν0 < ν1 < . . . < νk < . . .→∞

Normalize with
∫ −∞
∞ ρ(τ) yi (τ)yj(τ)d τ = δij where

ρ(τ) = e−τ
2/2

√
2π

is the normalized line density of a beam.
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SSC harmonics and chromaticity
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2.2 Dipole moments and flat bunch-by-bunch damper

Ik(ζ) =

∫ ∞
−∞

ρ(τ)Yk(τ) e i ζ τ d τ = I cos
k (ζ) + i I sin

k (ζ)

-20 -10 0 10 20 ζ
-1

-0.5

0

0.5

Ik(ζ )

k=0

-20 -10 0 10 20 ζ
-1

-0.5

0

0.5

Ik(ζ )

k=1

-20 -10 0 10 20 ζ
-1

-0.5

0

0.5

Ik(ζ )

k=2

-20 -10 0 10 20 ζ
-1

-0.5

0

0.5

Ik(ζ )

k=3

-20 -10 0 10 20 ζ
-1

-0.5

0

0.5

Ik(ζ )

k=4

-20 -10 0 10 20 ζ
-1

-0.5

0

0.5

Ik(ζ )

k=5

-20 -10 0 10 20 ζ
-1

-0.5

0

0.5

Ik(ζ )

k=6

-20 -10 0 10 20 ζ
-1

-0.5

0

0.5

Ik(ζ )

k=7

Figure: Real (blue) and imaginary (red) parts of first 8 dipole moments
for the Gaussian bunch SSC harmonics as functions of chromaticity.
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Abs(Ik) has max at ζ ≈ k
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Damper matrix

Ĝlm =

∫ ∞
−∞

∫ ∞
−∞

d τ dσ ρ(τ)ρ(σ)Yl(τ)Ym(σ) e i ζ(τ−σ) = Il(ζ)I ∗m(ζ)
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Figure: Matrices of direct product of dipole moments for ζ = 0, 10.
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2.3 Wake forces

Resistive wall impedance over distance L

Wm(τ < 0) = Jvc
2

π

1

b2m+1(1 + δm0)

√
c

σs

L√
|τ |
,

b — vacuum chamber radius
Jvc — Yokoya factor
σs — conductivity

κ → κ = Nb
r0R0

4π γ β2 Qβ

Qeff(0)

Q2
s

2 L
√

c/σs

π b3
,

W (τ) =
H(τ)√
|τ |

and W (ω) =

√
π

2

1 + i sgn(ω)√
|ω|

.
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Driving wake

Ŵlm(ζ) =

∫ ∞
−∞

W (ω − ζ)Il(ω)I ∗m(ω)
dω

2π
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Figure: Absolute values of driving resistive wall wake matrices Ŵlm(ζ).
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Detuning wake

D̂lm =

∫ ∞
−∞

D(τ)ρ(τ)Yl(τ)Ym(τ)dτ , D(τ) =

∫ ∞
0

ρ(σ + τ)√
σ

dσ.

Dlm
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Figure: Detuning wake matrix D̂lm and quadrupole wake field.
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3.1 DAMPER

Damper eigenproblem[
diag(νk)− i g e−i ψ Ĝ(ζ)

]
C = ωC.

ψ ψ ψ

focusing defocusing

ReactiveResistive Reactive

0 0 0π π π

−π/2 −π/2 −π/2

π/2 π/2 π/2
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Resistive damper, ψ = 0

For |2ζ| < |g | damper forms a rigid bunch mode.
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Figure: Bunch spectrum for resistive damper as a function of ζ.
Modes are ordered with respect to <ωk (all modes with k > 10 are
shown in black). Dashed lines show unperturbed frequencies ∆k = νk .
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Reactive damper, ψ = ±π/2
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Figure: Real part of bunch spectrum for defocusing (left) and focusing
(right) reactive dampers. Modes are ordered with respect to <ωk .
Dashed lines show unperturbed frequencies ∆k = νk .
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Damper asymptotic, |g | � |2ζ|
Damper sight band is determined by ∆k ≈ ζ2
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Figure: Real part of bunch spectrum for infinitely powerful resistive (left)
and reactive (right) dampers. Modes are ordered with respect to <ωk .
Dashed lines show unperturbed frequencies ∆k = νk .
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Damper and modes
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3.2 TMCI at ζ = 0.

Wake eigenproblem

R : ωC =
[
diag νk − κ Ŵlm(ζ)

]
C,

V : ωC =
[
diag νk − κ Ŵlm(ζ)− κ

2
D̂lm

]
C,

H : ωC =
[
diag νk −

κ

2
Ŵlm(ζ) +

κ

2
D̂lm

]
C.
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Convergence with number of modes
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Round chamber (R) and flat chamber vertical dof (V)

All coherent tune shifts are < 0 and TMCI caused by
coupling of 0-th and 1-st modes.
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Flat chamber horizontal dof (H)

All coherent tune shifts are > 0 and TMCI caused by
coupling of 6-th and 7-th modes.
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Resistive and reactive damper vs. TMCI at ζ = 0

R V H

R V H
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3.3 Instability for ζ 6= 0

Without damper when ζ 6= 0 beam is unstable ∀κ!
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It looks like one need to operate an accelerator at ζ < 0
below the transition energy (and ζ > 0 above the transition)
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Resistive damper will help now

κ=5 κ=10 κ=15

R

V

Note that the chromaticity sign is opposite to conventional!!!
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Horizontal degree of freedom can be stabilized as well

κ=5 κ=25

κ=50 κ=100
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4. Summary

• The fast and efficient Vlasov solver SCHARGEV 1.0 has been created.
It includes driving and detuning resistive wall wakes and feedback.
(work on Landau damping and couple-bunch wakes in progress)
• Thresholds and nature of TMCI for SSC Gaussian beam

Damper phase R V H
ζ = 0 — 40 65 390

−π/2 ≈ 100 ≈ 150 390
ζ 6= 0 0 ≈12 ≈14 ≈100

• For ζ = 0 defocusing reactive damper can be used to increase the TMCI
threshold (≈ 2–3 times) for round and vertical dof of flat chambers.
• For ζ 6= 0 the resistive damper will stabilize the instability for |ζ| < 1.
Note that the chromaticity sign is opposite to conventional.
• “Lake of stability” with ζ 6= 0 should be used due to its structural
stability and since its measure 2 > 1 — measure of “river” at ζ = 0.
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LAST SLIDE

Thank you for your
attention!

Questions?
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